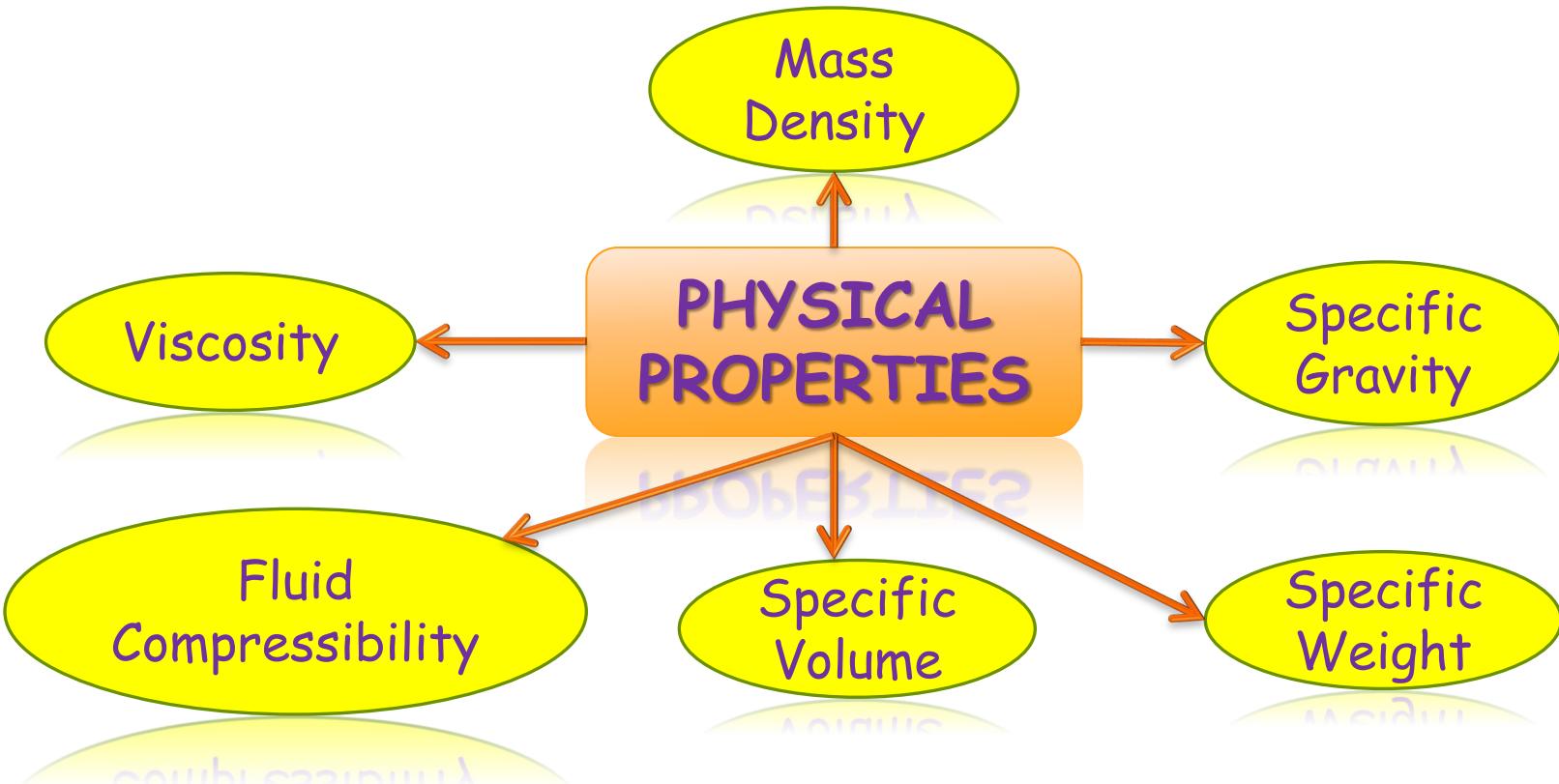


CHAPTER 1 : INTRODUCTION OF FLUID & FLUID PROPERTIES

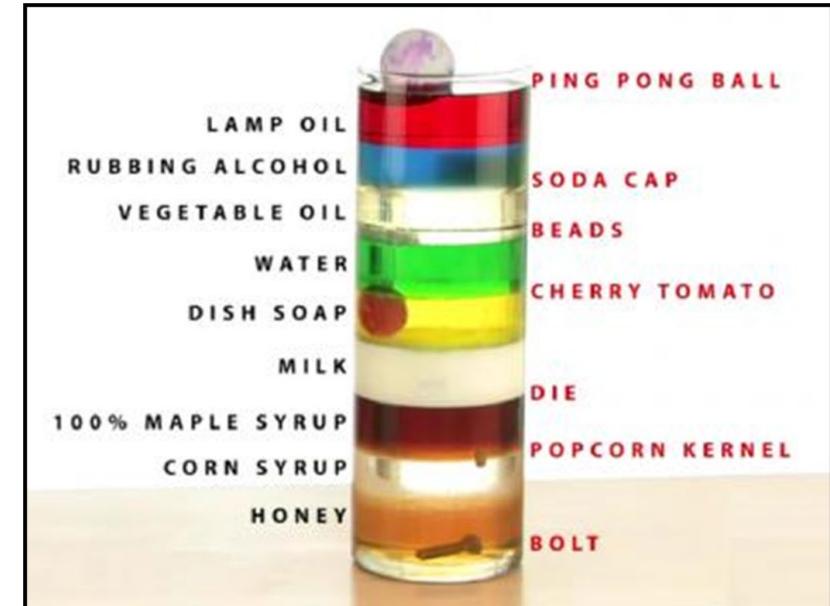
By,
Mdm. Jane Daniela
Dept. of Mechanical Eng.

CONTENT

PHYSICAL PROPERTIES OF FLUID


- A) Mass Density**
- B) Relative Density (Specific Gravity)**
- C) Specific weight**
- D) Specific volume**
- E) Fluid Compressibility**
- F) Viscosity**

PHYSICAL PROPERTIES OF FLUID


- ❖ Fluid properties are intimately related to fluid behavior.

PHYSICAL PROPERTIES OF FLUID

(A) Mass Density, ρ

- ✓ can be defined as mass per unit volume.
- ✓ symbol is ρ (rho) and the S.I unit is kg/m^3 .

$$\rho = \frac{m}{V}$$

density = mass / volume

PHYSICAL PROPERTIES OF FLUID

(B) Relative Density, Sp.gr (Specific Gravity)

- ✓ is the ratio of the specific weight of the liquid to the specific weight standard fluid (water).
- ✓ symbol is sp. gr.

Specific Weight of the substance

$$\text{sp. gr.} = \frac{\text{Specific Weight of the substance}}{\text{Specific Weight of an equal volume of water}}$$

or,

Density of the substance

$$\text{sp. gr.} = \frac{\text{Density of the substance}}{\text{Density of water}}$$

$$\zeta = \frac{\omega_{\text{subs}}}{\omega_{\text{water}}}$$

$$\zeta = \frac{\rho_{\text{subs}}}{\rho_{\text{water}}}$$

PHYSICAL PROPERTIES OF FLUID

(C) Specific Weight, ω

- ✓ can be defined as the weight per unit volume at the standard temperature and pressure.
- ✓ symbol is ω .
- ✓ S.I unit is N/m^3 .

❖
 m = mass, kg
 g = acceleration of gravity, m/s^2

$$W = mg$$

Formula: $\omega = \frac{\text{weight, } W}{\text{volume, } V}$, $\omega = \frac{mg}{V}$, $\omega = \rho g$

PHYSICAL PROPERTIES OF FLUID

(D) Specific Volume, v

- ✓ can be defined as volume per unit of fluid.
- ✓ S.I unit is m^3/kg .

$$v = \frac{\text{Volume, } V}{\text{mass, } m}, \quad v = \frac{1}{\rho}$$

PHYSICAL PROPERTIES OF FLUID

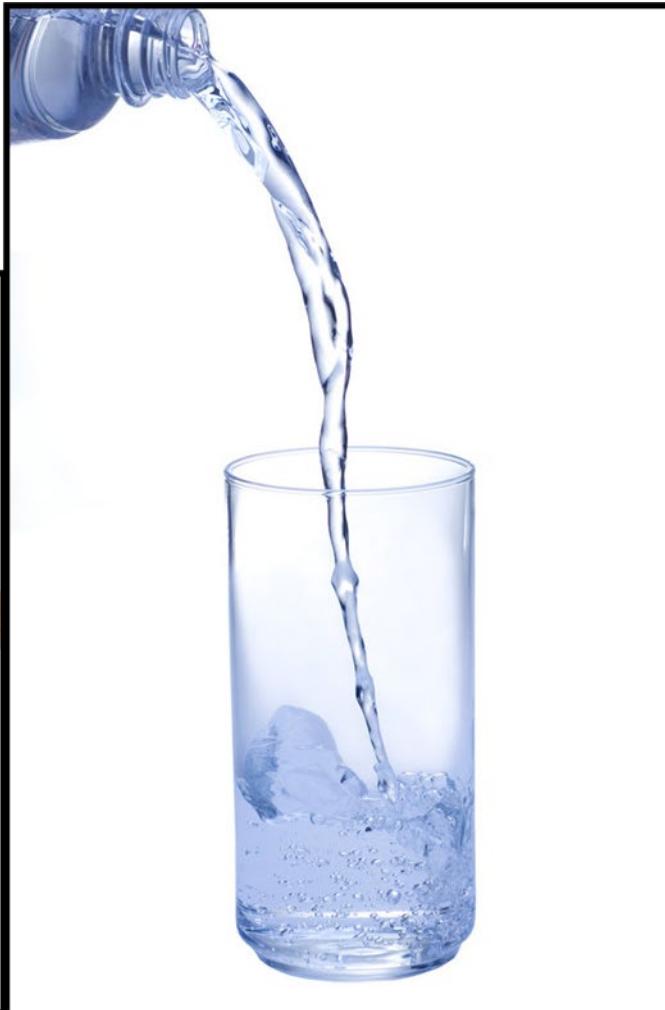
(E) Fluid Compressibility

COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS

- The **compressibility** of a fluid is the reduction of the volume of the fluid due to an external pressure acting on it.
- A **compressible fluid** will reduce its volume in the presence of external pressure.
- In nature all the fluids are compressible. Gases are highly compressible but liquids are not highly compressible.
- **Incompressible fluid** is a fluid that does not change the volume of the fluid due to external pressure.
- Incompressible fluids are hypothetical type of fluids, introduced for the convenience of calculations.
- The approximation of incompressibility is acceptable for most of the liquids as their compressibility is very low. However, gases cannot be approximated as incompressible hence their compressibility is very high

PHYSICAL PROPERTIES OF FLUID

(F) Viscosity, μ

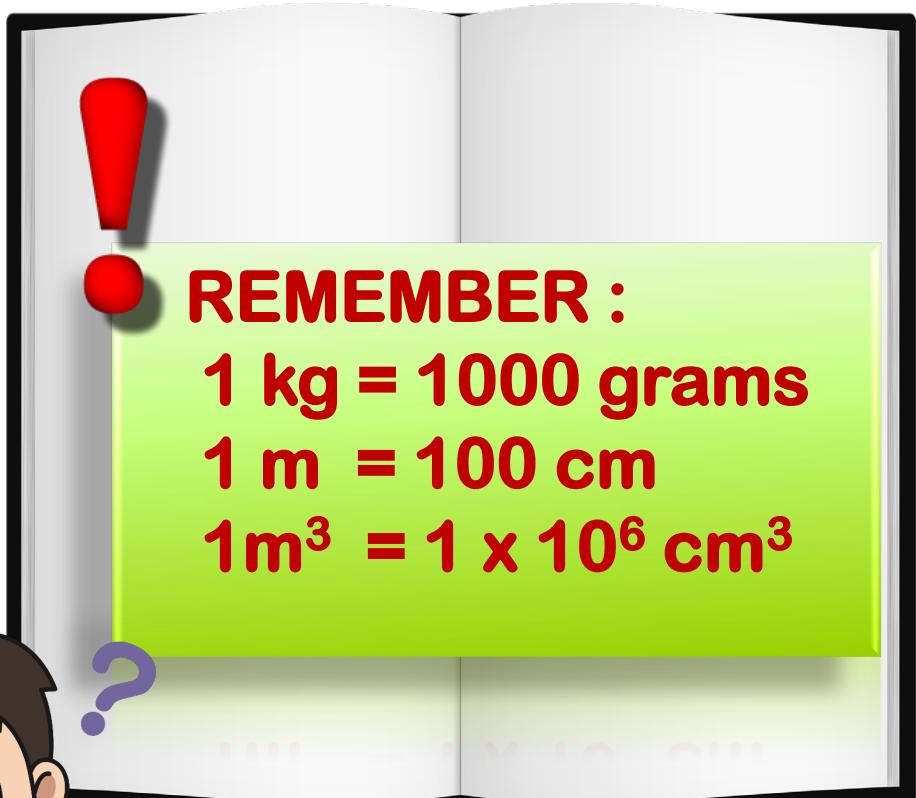
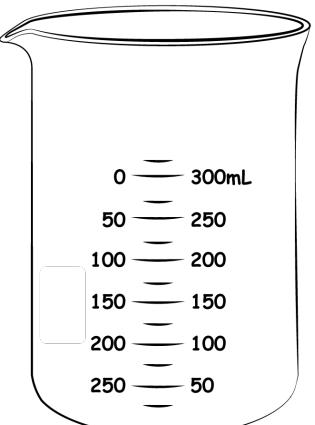

- ✓ Property of a fluid, due to cohesion & interaction between molecules, which resists sheer deformation.
- ✓ Different fluids deform at different rates under the same sheer stress.
- ✓ Example : viscous \rightarrow maple syrup (cold especially!)
: not viscous \rightarrow water

PHYSICAL PROPERTIES OF FLUID

Viscous

Not viscous

Example 1



What is the mass density ρ (in kg/m^3) and specific volume, v if mass is 450 g and the volume is 9 cm^3 .

Solution

- ✓ Given mass, $m = 450 \text{ g} = 0.45 \text{ kg}$
- ✓ Volume, $V = 9 \text{ cm}^3 = 9 \times 10^{-6} \text{ m}^3$

a) Mass density, $\rho = \frac{\text{mass},m}{\text{Volume},V} = \frac{0.45}{9 \times 10^{-6}}$
 $= \underline{\underline{50 \times 10^3 \text{ kg}/\text{m}^3}}$

b) Specific volume, $v = \frac{\text{Volume},V}{\text{mass},m} = \frac{9 \times 10^{-6}}{0.45}$
 $= \underline{\underline{2 \times 10^{-5} \text{ m}^3/\text{kg}}}$

Example 2

What is the specific weight, ω of fluid (in kN/m^3) and specific gravity if the weight of fluid is 10 N and the volume is 500 cm^3 .

Solution :

✓ Given Weight , $W = 10 \text{ N}$ Volume, $V = 500 \text{ cm}^3$
 $= 500 \times 10^{-6} \text{ m}^3$

a) Specific weight, $\omega = \frac{\text{Weight ,} W}{\text{Volume,} V}$
 $= \frac{10 \text{ N}}{500 \times 10^{-6}}$
 $= 20,000 \text{ N/m}^3 = 20 \times 10^3 \text{ N/m}^3$
 $= \underline{\underline{20 \text{ kN/m}^3}}$

b) Specific gravity, sp.gr = $\frac{\omega_{\text{substance}}}{\omega_{\text{water}}}$
 $= \frac{20 \times 10^3}{9810} = \underline{\underline{2.0387 \text{ (No unit)}}}$

Specific weight of water,
 $\omega_{\text{water}} = \rho_{\text{water}} \times g$
 $= 1000 \times 9.81$
 $= 9810 \text{ N/m}^3$

Exercise 1

1. Volume of lubricant oil in a tank is 5.5 m^3 and its weight is 50kN . Calculate the following;

- i. Mass density of oil
- ii. Specific weight of oil
- iii. Specific gravity of oil

Ans : i) 926.67 kg/m^3
ii) 9 kN/m^3
iii) 0.9267

Given Volume, $V = 5.5 \text{ m}^3$ and $W = 50 \text{ kN}$

So,

$$\text{i) Mass density, } \rho = \frac{\text{mass, } m}{\text{Volume, } V} \\ = \frac{5096.84}{5.5} \\ = \underline{926.7 \text{ kg/m}^3}$$

$$\text{ii) Specific weight, } \omega = \frac{\text{Weight, } W}{\text{Volume, } V} \\ = \frac{50 \times 10^3}{5.5} \\ = 9091 \text{ N/m}^3 @ 9.091 \text{ kN/m}^3 \\ = \underline{9 \text{ kN/m}^3}$$

$$\text{iii) Specific gravity, sp.gr.} = \frac{\text{specific weight of substance}}{\text{specific weight of water}} \\ = \frac{9091}{9810} \\ = \underline{0.9267}$$

Weight, $W = \text{mass} \times \text{acceleration due to gravity}$

$$= mg$$

$$\text{So, mass, } m = \frac{\text{Weight, } W}{\text{acceleration gravity, } g} \\ m = \frac{50 \times 10^3}{9.81} \\ = \underline{5096.84 \text{ kg}}$$

OR

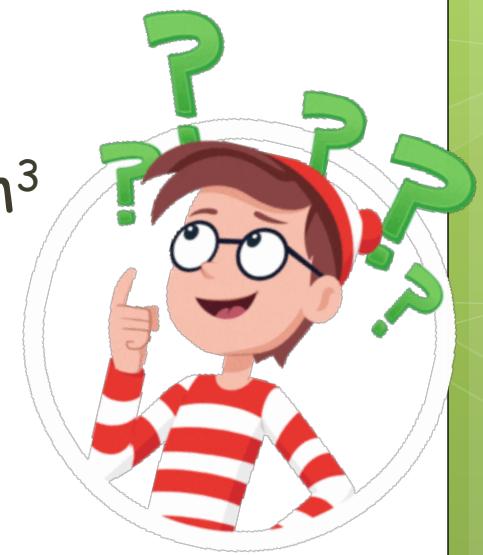
$$\text{ii) Specific weight, } \omega = \rho g \\ = 926.7 \times 9.81 \\ = 9091 \text{ N/m}^3 @ \\ 9.091 \text{ kN/m}^3$$

OR

$$\text{iii) Sp. gr.} = \frac{\text{mass density of substance}}{\text{mass density of water}} \\ = \frac{\rho_{\text{substance}}}{\rho_{\text{water}}} \\ = \frac{926.7}{1000} \\ = \underline{0.9267}$$

Exercise 1

2. A beaker contains some fluid has a density of 0.8 g/cm^3 and volume of 500 ml. Determine the **specific weight** of fluid in unit **N/m^3** , **weight of fluid** in **Newton** and **specific volume**


$$\rho = 0.8 \text{ g/cm}^3 = \frac{0.8 \text{ g}}{\text{cm}^3} \times \frac{10^6 \text{ cm}^3}{1 \text{ m}^3} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 800 \text{ kg/m}^3$$

$$V = 500 \text{ ml} = 0.5 \text{ liter} \rightarrow \text{m}^3 = 0.5 \text{ liter} \times \frac{1 \text{ m}^3}{1000 \text{ liter}} = 5 \times 10^{-4} \text{ m}^3$$

$$1 \text{ m}^3 = 1000 \text{ liter} \quad * \text{ mass, m} = 0.4 \text{ kg (calculated)}$$

Solve it..!

Ans: 7848 N/m^3 , 3.924 N , $1.25 \times 10^{-3} \text{ m}^3/\text{kg}$

Any Question???

Thank you....
Ευχαριστώ....

CHAPTER 2