

JABATAN KEJURUTERAAN MEKANIKAL		
DJJ30323 & STRENGTH OF MATERIALS		
LECTURER NAME		
TYPE OF ASSESSMENT		
TOPIC		
DURATION		
DATE OF ASSESSMENT		
STUDENT'S INFORMATION	NAME	REGISTRATION NO.
TOTAL MARKS	CLO3	/100

DJJ30323 & STRENGTH OF MATERIALS

PRACTICAL TASK 4 & DEFLECTION

CLO 3	Organize appropriate experiments in groups according to Standard Operation Procedures. (P4, PL05)	PL05	DK6: ENGINEERING PRACTICE DP1: DEPTH OF KNOWLEDGE DP3: DEPTH OF ANALYSIS REQUIRED DP4: FAMILIARITY OF ISSUES
--------------	---	-------------	---

A. TITLE

Comparison between theoretical and experimental maximum deflection.

B. OBJECTIVES

To study the deflection of beams using different types of materials.

C. TOPIC SUMMARY/ THEORY

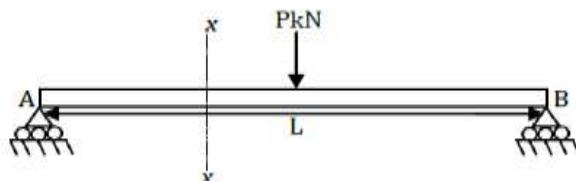
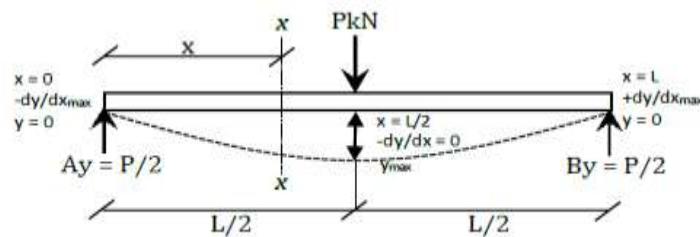



Figure 3(a)

FBD

The maximum deflection occurs at $x = L/2$; $y_{max} = -(PL^3 / 48EI)$

The formula of Moment of Inertia for square or rectangle; $I = bd^3/12$

Given Young's Modulus for materials used as beam.

$$E_{Wood} = 13 \text{ GN/m}^2$$

$$E_{Brass} = 105 \text{ GN/m}^2$$

$$E_{Steel} = 207 \text{ GN/m}^2$$

D. MATERIAL / TOOLS

Lists of apparatus:

- i. A pair of simple support
- ii. A set of loads
- iii. A set of materials used as beam
- iv. Load hanger
- v. Dial indicator
- vi. Measuring tape

E. GENERAL INSTRUCTION / SAFETY PROCEDURE

- i. Wear suitable attire when in the lab.
- ii. Wear safety goggles while handling the liquids.
- iii. Always clean droplets or excessive liquid at the working area during and after experiments.
- iv. Always obey the Lecturer/Lab Assistant instructions.

F. WORK INSTRUCTION / PROCEDURE

Lists of procedure:

- i. Measure the width, b and depth, d of the beam using measuring tape.
- ii. Place the beam on the supports, A and B.
- iii. Measure the length of the beam span, L from A to B using measuring tape.
- iv. Hang the load hanger at the center of the beam referring to the FBD.
- v. Place a set of loads on the load hanger.
- vi. Record the indicator's reading in Table 6.1, 6.2 and 6.3. The value displayed represents the value of deflection.
- vii. Repeat step (v) to (vi) for another **FOUR** sets of cases using the same beam.
- viii. Place another **TWO** sets of beams and repeat from step (i).

G. RESULT

Given the formula of percentage error, $y_{max} = [(y_{max}(exp) - y_{max}) / y_{max}] \times 100\%$ Answer the following questions:

- i. Fill in Table 1, 2 and 3.
- ii. Plot the bar chart to compare the theoretical and experimental deflection for each case.

Table 1: Wood

Table 2: Brass

Table 3: Steel

H. DISCUSSION

Discuss the following questions:

- i. Discuss the reaction that happens when a load is applied to the beam and discuss why the condition occurred.

- i. Discuss the probable factors that affect the accuracy of this experiment.

I. CONCLUSIONS

Make a conclusion about the experiment.

J. REFERENCES

List down all the books and journals referred.

PREPARED BY: (Course Lecturer)	CHECKED BY: (Course Coordinator/ Head of Programme)	APPROVED BY: (Head of Programme/ Head of Department)
..... (<i>Date:</i>) (<i>Date:</i>) (<i>Date:</i>)