

NUMBERING SYSTEM

Learning Outcomes:

At the end of this subtopic, students should be able to:

- 1) define numbering systems, recognize different types of numbering system, and determine binary system.
- 2) add and subtract in octal and hexadecimal number systems.
- 3) define data organization.
- 4) convert between four numbering systems.
- 5) solve binary arithmetic.

1.1 Understand Numbering System

A) Define numbering system: Binary, Octal, Decimal and Hexadecimal.

First of all, students should know the definition of a number itself. In dictionary, number is a **symbol or word representing a quantity**.

We know that 0, 1, 2, 3, 4, 5, 6, 7 and 9 are symbols of some quantities.

A number system defines how a number can be represented using distinct symbols.

A number can be represented differently in different system.

Binary	:	Only two numbers are involved which are 0 and 1 . It			
		known as Base 2.			
Octal	:	It is Base 8. Number involves is from 0 to 7.			
Decimal	:	Number consists from 0 to 9. It is also known as Base 10.			
Hexadecima	:	This system involves numbers and alphabets. It is Base			
		16 and numbers involve are 0 to 9 and the alphabets are			
		A until F.			

1.3 Understand Hexadecimal Numbering System

Hexadecimal number system uses base 16. Thus, it has 16 possible digit symbols. It uses the digits 0 through 9 plus the letters A, B, C, D, E and F as the 16 digit symbols. Table 2 shows the relationships between hexadecimal, decimal and binary. Note that each hexadecimal digit represents a group of for binary digits. It is important to remember that hex (abbreviation for hexadecimal) digits A through F are equivalent to the decimal values 10 through 15.

Decimal Base 10	Hexadecimal Base 16	Binary Base 2
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	А	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15	F	1111

A) Convert hexadecimal to decimal and decimal to hexadecimal.

4 Hexadecimal to Decimal Conversion

Example:

Convert 3A516 to decimal number

Solution:

3A5₁₆

 $= (3 \times 16^2) + (10 \times 16^1) + (5 \times 8^0) \rightarrow \text{Change A into decimal number.}$

= 768 + 160 + 5

 $= 933_{10}$

Decimal to Hexadecimal Conversion

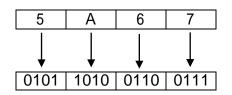
Example :

Convert 9657₁₀ into octal number.

Solution:

16	9657	=>	9	
16	603	=>	11(B)	
16	37	=>	5	
	2	=>	2	

Answer: $9657_{10} = 25B9_{16}$

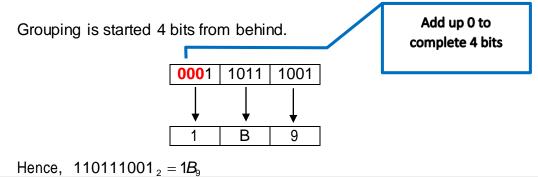

B) Convert hexadecimal to binary and binary to hexadecimal.

4 Convert Hexadecimal to Binary

Example:

Convert 5A67₁₆ into binary number

Solution:


Hence, $5A67_{16} = 0101101001100111_2$

Convert Binary to Hexadecimal

Example:

Convert 1101110012 into binary number.

Solution:

C) Convert hexadecimal to octal and octal to hexadecimal.

4	Convert Hexadecimal to Octal			
	Example:			
	Convert B2F ₁₆ to Octal			
	Solution:			

		B (11)	2	F (15)	
Convert to 4-bits Binary	=	1011	0010	1111	
Group to 3-bits Binary	=	101	100	101	111
Convert to Octal	=	5	4	5	7

Answer: B2F₁₆ = 5457₈

4 Convert Octal to Hexadecimal

Example : Convert 7178 (Hexadecimal)

Solution:

Convert to 3-bits Binary	=	111	001	111
Group to 4-bits Binary	=	000 1	1100	1111
Convert to Hexadecimal	=	1	С	F

Answer: 7178 = 1CF16