
DFP50283
WEB DEVELOPMENT TECHNOLOGY
CHAPTER 1

INTRODUCTION TO JAVA WEB TECHNOLOGIES

1.1 What is a Web Platform?
A web platform is an environment that enables the development and deployment
of web applications.

Standards for data
communication such as HTTP, HTTPS

Programming
Languages &
Frameworks

Tools for developing web
applications e.g., Java, JSP, Servlets, Spring

Store and manage data
for web applications (e.g., MySQL)

Client software for
accessing web
applications (e.g., Chrome, Firefox)

5
Web Browsers

Protocols

2
Web Servers

4 Software that handles
web requests (e.g., Apache, Tomcat)

Components of a
Web Platform

3

Databases

1

 Popular Java Web Platforms:

Platform Description

Java EE / Jakarta EE Standard for building enterprise-level applications

Spring Framework Lightweight and flexible framework for creating web
apps with Java

Apache Tomcat A widely-used servlet container for deploying Java web
apps

GlassFish Reference implementation for Java EE

 1.1.1 Identify Components of a
Web Application
A web application consists of three main components that work together:

Database
• Stores application data securely
• (e.g., user info, transactions)
• Technologies: MySQL, PostgreSQL, Oracle DB

Server(Back-End)

• Processes logic andmanages data flow
• Technologies: Java (Servlets, JSP), PHP, Node.j

Client(Front End)

• Interface seen by users via a web browser
• Technologies: HTML, CSS, JavaScript

 1.1.1 Identify Components of a
Web Application

Web App Interaction Flow

User Sends
Request

Server Interacts
with Database

The user initiates the
process by sending a

request.

Server
Processes

Request

The server interacts
with the database to

retrieve or store
data.

Server Sends
Response

The server sends a
response back to the

user.
The server receives
and processes the

user's request.

 1.1.2 Understand Static Web Pages

Fixed content – same for all users

Content written directly in HTML/CSS Static Web Page

No interaction with databases or servers
for data processing

 1.1.2 Understand Static Web Pages

Quick content delivery
enhances user

experience and site
performance.

No dynamic content
Lacks real-time
updates, limiting user
engagement.

1

No backend processing

2

1

2
No user interaction

Eliminates server
load, reducing

complexity and
maintenance costs.

Fast loading

Cons

Prevents personalized
experiences and
interactive features.

Pros

Simple site ideal

3

Characteristics of
Static Web Page

3
Not scalable

Perfect for
straightforward sites

like portfolios and
landing pages.

Difficult to expand
with growing content
or user base.

 Example:

<!DOCTYPE html>
<html>
 <head><title>Welcome</title></head>
 <body><h1>Hello, World!</h1></body>
</html>

 1.1.3 Understand Dynamic Web Pages

User Actions/Data

Content changes based on user actions or data Dynamic Web
Page

Built using server-side technologies like Java
Servlets, JSP

 1.1.3 Understand Dynamic Web Pages

Tailored content enhances user

experience and engagement. (e.g., user
profiles, shopping cart)

Development complexity
Complex development requires skilled
backend developers.

1

Interactive features
2

1

2

Server-side technologies

Interactive elements increase user
involvement and satisfaction.

Database connectivity enables real-time data
updates and personalization.

Server-side technologies demand advanced
technical knowledge.

Dynamic Web Pages
Characteristics

Database integration
3

Pros

3

Backend logic
Backend logic necessitates robust
server infrastructure and maintenance.

Cons

Personalized content

 Java Example (using JSP):

<%@ page language="java" %>
<html>
 <body>
 <h2>Hello, <%= request.getParameter("name") %>!</h2>
 </body>
</html>

If user inputs "Ali", page shows: Hello, Ali!

 Activity

Discuss the differentiation between Static and

Dynamic Web Pages

 1.2 Explain the Java EE Platform in Web
Technologies

• Java EE (now Jakarta EE) is a powerful platform for building large-

scale, secure, and distributed enterprise web applications.

• It extends the Java SE (Standard Edition) by providing libraries and

tools specifically for web-based and enterprise-level

development.

1.2.1 Describe Java EE Architecture

Java EE Multi-tier Architecture

EIS Tier

Business Tier

Web Tier

Client Tier

• Used by end users
• Devices like browsers, mobile apps, or Java-based GUI
• Technologies: HTML, Java Applet, JavaFX

• Handles user interface and web page rendering
• Technologies: Java Servlets, JavaServer Pages (JSP), JSF (JavaServer Faces)
• Acts as a bridge between client and business logic

• Contains business logic, rules, and operations
• Technologies: Enterprise JavaBeans (EJB), CDI (Contexts and Dependency Injection)

• Handles data storage and integration with legacy systems
• Technologies: JDBC, JPA, JNDI, databases like MySQL, Oracle

1.2.1 Describe Java EE Architecture

User
Interaction

Flow

User Request
User initiates a request to the system.

Response to User Web Layer Processing
Response is sent back to the user.

Request is processed through the web layer.

Data Retrieval Business Logic Application
Necessary data is retrieved from the database. Business logic is applied to handle the request.

 1.2.2 Identify Various Technologies in
Java EE

 a. Client-Side Technologies

Technology Description

Java Application Standalone program written in Java, may interact with web server

Java Applet Mini Java program embedded in HTML, runs in browser
(deprecated in modern web)

HTML Basic markup language used to create web pages and forms

 1.2.2 Identify Various Technologies in
Java EE

 b. Server-Side Technologies

Technology Description

Servlets Java classes that handle HTTP requests and generate
dynamic responses

JSP (JavaServer Pages) Allows embedding Java code inside HTML for dynamic
content generation

JSF Component-based UI framework for building user
interfaces for web apps

 Example Servlet Code:

@WebServlet("/hello")
public class HelloServlet extends HttpServlet {
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException {
 response.getWriter().println("Hello from Servlet!");
 }
}

 Example JSP Code:

<%@ page language="java" %>
<html>
 <body>
 <h1>Welcome <%= request.getParameter("user") %></h1>
 </body>
</html>

 1.2.2 Identify Various Technologies in
Java EE

 c. Server-Side Business Technologies

Technology Description

EJB (Enterprise JavaBeans) Server-side components that encapsulate business logic and
transaction management

Types of EJB:

- Session Beans Handle business logic (Stateless/Stateful)

- Message-Driven Beans Handle asynchronous messaging

- Entity Beans (deprecated) Used for representing database records

 Example:

@Stateless
public class OrderService {
 public void placeOrder(String productId, int quantity) {
 // business logic to place order
 }
}

 Summary

Layer Technology Role

Client HTML, Java Applet, Java App User interface and input

Web Tier Servlets, JSP Handles requests/responses

Business Tier EJB Business rules & processing

Data Tier JDBC, JPA Connects to database systems

 1.3 Organize Servlet to Build Web
Application

Servlet is the backbone of many Java-based web applications. It

enables dynamic content generation, request-response

processing, and interaction with users over the web.

 1.3.1 Define Servlet

• A Servlet is a Java class that runs on a web server and handles client requests

(usually from browsers) and sends back responses.

• Key points:
• Runs on server-side

• Part of Java EE / Jakarta EE

• Follows request-response model using HTTP protocol

 Example: When a user submits a login form, the servlet processes the data and

returns the appropriate result.

 1.3.2 Explain the Architecture of Servlet

• Servlet architecture follows a client-server model.
• Flow:

• Client (Browser) sends a request via HTTP

• Web Server (e.g., Tomcat) receives it

• Server forwards the request to the Servlet

• Servlet processes the request (e.g., reading form data)

• Servlet sends response back (HTML or data)

• Client receives and renders the response

 Components Involved:

Component Role

Servlet Class Handles logic for requests/responses

Web Container Manages lifecycle, maps URLs

Web.xml / Annotations Maps servlet to URL pattern

 1.3.3 Describe Servlet Lifecycle

• Servlet lifecycle is controlled by the Servlet Container and
consists of three key methods:

Method Description

init() Called once when servlet is first loaded. Used to
initialize resources.

service() Called every time a request is made. Handles
logic and sends a response.

destroy() Called once when servlet is being removed. Used
to release resources.

 Lifecycle Diagram:
destroy() Initiates the process with an HTTP

request
Cleans up resources

Web Server

Receives and forwards the
request

Response

Servlet Lifecycle

Sends back the response

Browser Request

Initializes the servlet

Manages servlet instancesservice()
Handles the request

init()

Servlet Container

 1.3.4 Apply Core Servlet API:
GenericServlet, ServletRequest,
ServletResponse

public class MyServlet extends GenericServlet {
 public void service(ServletRequest req, ServletResponse res) throws IOException {
 res.getWriter().println("Hello from GenericServlet");
 }
}

❖ GenericServlet
• Abstract class implementing Servlet interface

• Used as a base class to build protocol-independent servlets

• Must override service() method

 1.3.4 Apply Core Servlet API:
GenericServlet, ServletRequest,
ServletResponse

❖ ServletRequest

• Carries client request data to the servlet

• Useful methods:

• getParameter(String name)

• getInputStream()

 1.3.4 Apply Core Servlet API:
GenericServlet, ServletRequest,
ServletResponse
❖ ServletResponse

• Used to send output to client

• Useful methods:

• getWriter() – to send character data (HTML)

• getOutputStream() – to send binary data

 1.3.5 Explain HTTP Servlets:
HttpServletRequest & HttpServletResponse

• Most modern web applications use HTTP protocol, so we usually
extend HttpServlet instead of GenericServlet.

❖HttpServletRequest
• Special version of ServletRequest for HTTP
• Additional methods:

• getParameter("username")
• getHeader("User-Agent")
• getCookies()

 1.3.5 Explain HTTP Servlets:
HttpServletRequest & HttpServletResponse

• Most modern web applications use HTTP protocol, so we usually
extend HttpServlet instead of GenericServlet.

❖ HttpServletResponse
• Special version of ServletResponse for HTTP
• Additional methods:

• sendRedirect("page.jsp")
• setStatus(200)
• addCookie(cookie)

 Example: HttpServlet Code

@WebServlet("/hello")
public class HelloServlet extends HttpServlet {
 protected void doGet(HttpServletRequest req, HttpServletResponse
res) throws IOException {
 String name = req.getParameter("name");
 res.getWriter().println("Hello, " + name + "!");
 }
}

URL: http://localhost:8080/hello?name=Ali
Output: Hello, Ali!

http://localhost:8080/hello?name=Ali

 Summary

Topic Description

Servlet Java class that handles HTTP requests/responses

Lifecycle Methods init(), service(), destroy()

GenericServlet Protocol-independent servlet class

ServletRequest/Response Base interfaces for request and response handling

HttpServletRequest/Response HTTP-specific request/response handling

	Slide 1: DFP50283 WEB DEVELOPMENT TECHNOLOGY
	Slide 2: 🌐 1.1 What is a Web Platform?
	Slide 3: 🔧 Popular Java Web Platforms:
	Slide 4: 🧩 1.1.1 Identify Components of a Web Application
	Slide 5: 🧩 1.1.1 Identify Components of a Web Application
	Slide 6: 📄 1.1.2 Understand Static Web Pages
	Slide 7: 📄 1.1.2 Understand Static Web Pages
	Slide 8: 🛠️ Example:
	Slide 9: ⚙️ 1.1.3 Understand Dynamic Web Pages
	Slide 10: ⚙️ 1.1.3 Understand Dynamic Web Pages
	Slide 11: 🛠️ Java Example (using JSP):
	Slide 12: 🚀 Activity
	Slide 13: 🌐 1.2 Explain the Java EE Platform in Web Technologies
	Slide 14: 🏗️ 1.2.1 Describe Java EE Architecture
	Slide 15: 🏗️ 1.2.1 Describe Java EE Architecture
	Slide 16: 🛠️ 1.2.2 Identify Various Technologies in Java EE
	Slide 17: 🛠️ 1.2.2 Identify Various Technologies in Java EE
	Slide 18
	Slide 19
	Slide 20: 🛠️ 1.2.2 Identify Various Technologies in Java EE
	Slide 21
	Slide 22: 🧾 Summary
	Slide 23: 🌐 1.3 Organize Servlet to Build Web Application
	Slide 24: ✅ 1.3.1 Define Servlet
	Slide 25: ✅ 1.3.2 Explain the Architecture of Servlet
	Slide 26: 🔧 Components Involved:
	Slide 27: ✅ 1.3.3 Describe Servlet Lifecycle
	Slide 28: 💡 Lifecycle Diagram:
	Slide 29: ✅ 1.3.4 Apply Core Servlet API: GenericServlet, ServletRequest, ServletResponse
	Slide 30: ✅ 1.3.4 Apply Core Servlet API: GenericServlet, ServletRequest, ServletResponse
	Slide 31: ✅ 1.3.4 Apply Core Servlet API: GenericServlet, ServletRequest, ServletResponse
	Slide 32: ✅ 1.3.5 Explain HTTP Servlets: HttpServletRequest & HttpServletResponse
	Slide 33: ✅ 1.3.5 Explain HTTP Servlets: HttpServletRequest & HttpServletResponse
	Slide 34: 💻 Example: HttpServlet Code
	Slide 35: 🧾 Summary

